Prototipe Emulator Panel Surya Menggunakan Buck Converter Berbasis Arduino dan Graphical User Interface Matlab
Main Article Content
Abstract
Tulisan ini membahas perancangan perangkat keras emulator sel surya, memonitoring keluaran emulator menggunakan MATLAB GUI, dan membandingkan karakteristik hasil pengukuran langsung dengan karakteristik hasil simulasi untuk mengetahui unjuk kerja sistem panel surya. Emulator panel surya ini akan dimodelkan dengan persamaan matematis di Arduino Uno dengan menginputkan nilai iradiasi, suhu, arus dan tegangan keluaran buck converter yang diberikan sebagai umpan balik dan menghasilkan arus referensi yang kemudian dibandingkan dengan arus keluaran buck converter dimana kesalahan perbandingan akan di kontrol oleh kendali PID. Hasil uji coba dengan hardware emulator sel surya menunjukkan karakteristik yang mirip dengan modul Solkar 36, dengan tingkat kesalahan rerata sekitar 5,16% untuk daya maksimum, 2,08% untuk arus short circuit, dan 0,28% untuk tegangan open circuit. Penurunan nilai iradiasi mengakibatkan penurunan rata-rata pada arus short circuit, tegangan open circuit, dan daya maksimum sekitar 0,761 A, 0,558 V, dan 17,034 W. Selain itu, rata-rata penurunan Voc dan daya maksimum akibat kenaikan suhu 10 ºC yaitu 0,26 V dan 1,11182 W, sedangkan Isc mengalami peningkatan sekitar 0,015 A.
This study discusses the hardware design of a solar cell emulator, monitoring the emulator's output using a MATLAB GUI, and comparing the characteristics of direct measurements with the characteristics of simulation results to determine the solar panel system's performance. This solar panel emulator will be modeled with mathematical equations on an Arduino Uno by inputting values such as irradiance, temperature, current, and output voltage of the buck converter as feedback and generating a reference current, which is then compared with the buck converter's output current. The comparison error will be controlled by a PID controller. Experimental results with the solar cell emulator hardware show characteristics similar to the Solkar 36 module, with an average error rate of about 5.16% for maximum power, 2.08% for short-circuit current, and 0.28% for open-circuit voltage. A decrease in irradiance results in an average decrease in short-circuit current, open-circuit voltage, and maximum power by about 0.761 A, 0.558 V, and 17.034 W, respectively. In addition, the average decrease in Voc and maximum power due to a 10 ºC temperature increase is 0.26 V and 1.11182 W, while Isc increases by approximately 0.015 A.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] V. N. Setiawan, “Semester I-2023, Pemanfaatan EBT RI Capai 12,7 GW,” Jul. 2023. [Online]. Available: https://www.cnbcindonesia.com/news/20230724085552-4-456641/semester-i-2023-pemanfaatan-ebt-ri-capai-127-gw#:~:text=Jakarta%2C CNBC Indonesia %2D Kementerian Energi,%2C7 Megawatt (MW).
[3] M. Ervin, dan Jamaaluddin, and M. Sidoarjo Jl Raya Gelam, “Pemanfaatan Solar Cell Sebagai Alternatif Energi Listrik Skala Rumah Tangga,” Repos. Univ. Muhammadiyah Sidoarjo, 2020, doi: http://eprints.umsida.ac.id/id/eprint/7230.
[4] D. Joshi and S. Sharma, “.,” Springer Link, Jun. 01, 2019. https://link.springer.com/chapter/10.1007/978-981-13- 6772-4_55
[5] M. Alaoui, H. Maker, A. Mouhsen, and H. Hihi, “Photovoltaic Emulator of Different Solar Array Configurations Under Partial Shading Conditions Using Damping Injection Controller,” Int. J. Power Electron. Drive Syst., vol. 11, no. 2, pp. 1019–1030, Jun. 2020, doi: 10.11591/ijpeds.v11.i2.pp1019-1030.
[6] N. Amna, I. D. Sara, and T. Tarmizi, “Performa Konfigurasi Modul Surya Seri dan Seri Paralel pada Kondisi Mismatch Karakteristik Arus-Tegangan (I-V) terhadap Daya Output,” J. Rekayasa Elektr., vol. 17, no. 4, pp. 204–211, 2021, doi: 10.17529/jre.v17i4.22467.
[7] V. Shashank, R. T. Srinivas, and P. S. Kulkarni, “Photovoltaic Emulator,” J. CPRI, vol. 11, no. 2, pp. 375–382, 2015, Accessed: Aug. 04, 2023. [Online]. Available: https://cprijournal.in/index.php/pr/article/view/733
[8] R. Pido, S. Himran, and Mahmuddin, “Analisa Pengaruh Pendinginan Sel Surya Terhadap Daya Keluaran dan Efisiensi,” J. Tek. Mesin Teknol., vol. 19, no. 1, pp. 31–38, 2018, Accessed: Aug. 04, 2023. [Online]. Available: https://ojs.unm.ac.id/teknologi/article/view/7858/4578
[9] R. Ayop, C. W. Tan, S. M. Ayob, N. D. Muhamad, J. J. Jamian, and Z. A. Noorden, “Photovoltaic Emulator Using Error Adjustment Fuzzy Logic Proportional-Integral Controller,” Int. J. Power Electron. Drive Syst., vol. 13, no. 2, pp. 1111–1118, Jun. 2022, doi: 10.11591/ijpeds.v13.i2.pp1111-1118.
[10] T. Armaliany, “Rancang Bangun Instrumentasi Konverter Buck dengan Graphical User Interface,” MSI Trans. Educ., vol. 03, no. 3, pp. 141–152, 2022, doi: https://doi.org/10.46574/mted.v3i3.94.
[11] A. Anggawan and M. Yuhendri, “Implementasi Kendali Tegangan Output Buck converter Berbasis Simulink Matlab,” J. Tek. Elektro Indones., vol. 2, no. 1, pp. 34–39, 2020, doi: https://doi.org/10.24036/jtein.v2i1.110.
[12] M. Jannah, “Perancangan Sistem Kendali Level Cairan Menggunakan Graphical User Interface (GUI) Matlab Berbasis Mikrokontroler,” Universitas Negeri Padang, 2022.
[13] F. Yusivar, M. Y. Farabi, R. Suryadiningrat, W. W. Ananduta, and Y. Syaifudin, “Buck-Converter Photovoltaic Simulator,” Int. J. Power Electron. Drive Syst., vol. 1, no. 2, pp. 156–167, 2011.
[14] Krismadinata, N. A. Rahim, H. W. Ping, and J. Selvaraj, “Photovoltaic Module Modeling using Simulink/Matlab,” Procedia Environ. Sci., vol. 17, pp. 537–546, 2013, doi: 10.1016/j.proenv.2013.02.069.
[15] A. V. Rana and H. H. Patel, “Current Controlled Buck converter based Photovoltaic Emulator,” J. Ind. Intell. Inf., vol. 1, no. 2, pp. 91–96, 2013, doi: 10.12720/jiii.1.2.91-96.
[16] S. Badri and K. Krismadinata, “Design of Boost Converter Integrated with Graphical User Interface,” Motiv. J. Mech. Electr. Ind. Eng., vol. 2, no. 1, pp. 31–42, 2020, doi: 10.46574/motivection.v2i1.40.
[17] B. R. Ananda, Implementasi Desain Buck converter dengan PID Controller Menggunankan Metode Tunning Genetic Algorithm (GA), Skripsi. Semarang: Universitas Negeri Semarang, 2020.
[18] A. B. Pulungan, Sukardi, and T. Ramadhani, “Buck converter Sebagai Regulator Aliran Daya Pada Pengereman Regeneratif,” J. EECCIS, vol. 12, no. 2, pp. 93–97, 2018, [Online]. Available: https://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/551
[19] E. E. Wibowo, “Rancang Bangun Buck converter Sebagai Charging Baterai pada Sistem PLTS,” Padang, 2022. Accessed: Aug. 04, 2023. [Online]. Available: http://repository.unp.ac.id/id/eprint/43838
[20] A. F. Rifai, W. Purnomo, and R. E. Putri, “Rancang Bangun Dc To Dc Buck converter Dengan Sistem Kendali Pi Pada Ni Elvis Ii Dan Antarmuka Berbasis Labview,” JTT (Jurnal Teknol. Ter., vol. 7, no. 2, p. 129, 2021, doi: 10.31884/jtt.v7i2.333.
[21] P. Harahap, “Implementasi karakteristik arus dan tegangan plts terhadap peralatan trainer energi baru terbarukan,” Semin. Nas. Tek. UISU, vol. 2, no. 1, pp. 152–157, 2019.
[22] A. Kurniawan, “Perancangan Model dan Simulasi Modul Sel Surya Paralel Menggunakan MATLAB,” J. Tek. Mesin, Ind. Elektro …, vol. 1, no. 3, 2022, [Online]. Available: https://ejurnal.politeknikpratama.ac.id/index.php/jtmei/article/view/1249https://ejurnal.politeknikpratama.ac.id/index.php/jtmei/article/download/1249/1217